
Methodologies for Accelerated Analysis of the Reliability
and the Energy Efficiency Levels of Modern

Microprocessor Architectures
Emmanouil Kaliorakis1

National and Kapodistrian University of Athens
Department of Informatics and Telecommunications

manoliskal@di.uoa.gr

Abstract. The evolution in computer architecture leads to increase in perfor-
mance of modern microprocessors, which is also accompanied by decrease in
products’ reliability that is defined as their ability to avoid service failures that
are more frequent and more severe than is acceptable. Thus, designers apply dif-
ferent techniques throughout microprocessors life-time in order to ensure the
high reliability requirements of the delivered products.

This thesis proposes novel methods to guarantee the high reliability and en-
ergy efficiency requirements of modern microprocessors that can be applied dur-
ing three phases of the processors’ life-cycle: (a) MeRLiN methodology to accel-
erate (from 1 up to 3 orders of magnitude) the reliability assessments of hardware
structures at the microarchitectural level against transient faults, (b) a methodol-
ogy to accelerate the online permanent fault detection of many-core architectures
providing up to 47.6X speedup using the Intel SCC chip as experimental vehicle,
and (c) a comprehensive statistical analysis method based on linear regression
with different feature selection methods to predict the safe voltage operation mar-
gins of the ARM-v8 cores of the enterprise X-Gene 2 micro-server.

Keywords: Reliability, transient faults, permanent faults, energy efficiency,
statistical analysis

1 Introduction

The evolution in semiconductor technology and computer architecture give designers
the opportunity to boost the performance of modern computing systems that are used
in several domains of information and communication technology systems. Despite the
changes in Moore’s Law [1], computer architects and designers are still able to improve
processor performance by using more aggressive and sophisticated techniques. How-
ever, the scaling in performance is also accompanied by increase in the vulnerability
(or decrease in reliability) of microprocessors due to: (a) the strict deadlines that are
required to minimize Time-to-Market (TTM) (minimizing also the time needed to test
the circuits), (b) the modern device integration techniques that make processors more
vulnerable to the radiation and also increase the occurrence of manufacturing defects,

1 Dissertation Advisor: Dimitris Gizopoulos, Professor.

and (c) the increased design complexity that makes the testing process of the micropro-
cessor products very difficult and unaffordable for the available TTM.

Specifically, the modern microprocessors face serious reliability issues during their
entire life-cycle due to: (i) the errors that come from transient faults caused by cosmic
rays, alpha particles and electromagnetic interference and are manifested as instantane-
ous flips of the values of real hardware bits, (ii) aging that leads to errors that appear at
regular time intervals (intermittent errors) or exist indefinitely (permanent errors), and
(iii) manufacturing defects that can either be manifested as permanent errors or lead to
timing errors when the chips operate beyond their nominal voltage and frequency con-
ditions. These manufacturing imperfections usually force computer architects to adopt
pessimistic operation margins in terms of voltage in order to protect the chips, while
sacrificing the energy efficiency of the delivered product.

2 Contributions during microprocessors life-cycle

Manufacturers use several validation techniques that are implemented throughout the
processor life-cycle in order to protect the chips from the different types of malfunc-
tions, which are very important to ensure the design requirements in terms of function-
ality, performance, power and reliability of the delivered products. The goal of this
dissertation is to provide solutions to different validation challenges during the prod-
ucts’ lifetime. The contributions of this thesis can be grouped in the two following cat-
egories (Pre-Silicon and Post-Silicon Reliability Analysis techniques) according to the
time interval they can be used during the microprocessor life-cycle:

Pre-Silicon Reliability Analysis: A very important task during the early design

phases is the reliability estimation of the hardware structures and the entire chips
against transient faults. The reliability and performance requirements that are defined
during the planning design phase can guide several design decisions in the next phases
of the processor life-cycle, such as implementation of protection mechanisms or even
determination of several microarchitectural features (size of hardware structures, poli-
cies, etc.) that can influence not only the vulnerability of a chip but also its performance.
Statistical fault injection of transient faults (flips of real hardware bit values) on micro-
architectural structures modeled in performance simulators is a state-of-the-art method
to accurately measure the reliability, but suffers from low simulation throughput.

This thesis presents several contributions in the research field of pre-silicon relia-
bility analysis phase of processors life-cycle. Firstly, in [2] we present a novel fully-
automated versatile architecture-level fault injection framework (called MaFIN) that is
built on top of a state-of-the-art x86-64 microprocessor simulator (called Marssx86),
for thorough and fast characterization of a wide range of hardware components with
respect to various fault models (transient, intermittent, permanent faults). Next, by us-
ing the same tool and focusing mainly on the transient faults we executed two reliability
evaluation studies. In the first study, we evaluated the reliability and performance
tradeoffs for major hardware components of an x86-64 microprocessor across several
important parameters of their design (size, associativity, write policy, etc.) [3]. In the

second study [4], we used MaFIN in conjunction with a different tool (called GeFIN)
that is also used for early reliability assessments at the microarchitecture level to eval-
uate in a differential way: (a) the reliability sensitivity of several microarchitecture
structures for the same ISA (x86-64) implemented on two different simulators, and (b)
the reliability of workloads and microarchitectures for two popular ISAs (ARM vs. x86-
64). The conclusions of studies [3] and [4] can guide design decisions during the early
design phase of the microprocessors concerning reliability and performance, while
avoiding any costly redesign phase.

A major challenge of the early reliability assessments to soft errors at the microar-
chitecture level using statistical fault injection is that the campaigns that provide esti-
mations of high statistical significance require excessively long experimental time. This
thesis addresses this challenge by proposing two methodologies. Firstly, we propose to
accelerate the individual fault injection runs by using several techniques that are imple-
mented in the simulator and take place after the fault is actually injected in the hardware
structure [5]. Secondly, to further accelerate the microarchitecture level fault injection
campaigns we propose MeRLiN [6] that provides a final speedup of several orders of
magnitude, while keeping the accuracy of the assessments unaffected even for large
injection campaigns with very high statistical significance. The core of this methodol-
ogy is the pruning of the initial fault list by grouping the faults in equivalent classes
according to the instruction that finally accesses the faulty entry. Faults that belong to
the same group are very likely to lead to the same fault effect; thus, fault injection is
performed only in a few representatives from each group. MeRLiN methodology con-
stitutes a major breakthrough in the field of accelerating the reliability estimations of
hardware components at the microarchitecture level with negligible loss of accuracy.

Post-Silicon Reliability Analysis: Another important phase during the processor

reliability life-cycle is the Post-Silicon Reliability Analysis that consists of the manu-
facturing testing and the in-field verification that take place during the fabrication pro-
cess and after the release of the microprocessors to the market, respectively. Note that
in contrast to Pre-Silicon Reliability Analysis, in this phase the validation targets im-
plemented circuits and especially after their release to the market when the designers
have no longer interaction with the design. The contributions of this thesis in this phase
of the life-cycle cover two important research fields:
a) Acceleration of permanent faults online detection in many-core architectures:

The extreme complexity of many-core processor architectures and the pressure for
reduced time-to-market renders even the most comprehensive verification and test-
ing process before and during mass production incomplete. A significant popula-
tion of manufacturing faults escape in the field of operation and jeopardize correct-
ness of the chip. Online functional testing is an attractive low-cost error detection
solution, but it should be fast enough in order to not impact the system perfor-
mance. This thesis faces this challenge by proposing an effective parallelization
methodology [7] to accelerate online error detection for many-core architectures
by exploiting the high-speed message passing on-chip network to accelerate the
parallel execution of the test preparation phase of memory-intensive test programs.

To demonstrate the efficiency of the proposed methodology we used a 48-core real
hardware chip, Intel’s Single-chip Cloud Computer (SCC).

b) Statistical analysis to predict the safe voltage margins in multicore CPUs for
energy efficiency: Reduction of the voltage operation margins of multicore chips
is a major challenge for the designers to gain in terms of power. Unfortunately, this
reduction leads to several reliability issues due to the manufacturing defects that
make hardware cores of the same chip to present variations in their safe voltage
and frequency operation limits. These variations that remain constant after the re-
lease of the chip to the market are classified as static variations. On top of that,
transistor aging and dynamic variations in supply voltage and temperature, caused
by different workload interactions can also affect the correct operation of a micro-
processor. Thus, the designers choose to insert conservative guard-bands in the
operating voltage (and frequency) to protect the chips from the effects of the static
and the dynamic variations, despite the induced cost in terms of energy (and per-
formance). The contribution of this thesis to this challenge is to propose a detailed
statistical analysis methodology [8] [9] to accurately predict at the system level the
safe voltage operation margins of the eight ARMv8 cores of the X-Gene 2 chip
fabricated on 28nm technology. Our analysis uses as inputs the microprocessor’s
performance counters values of benchmarks that were collected in nominal voltage
conditions execution and the results of the characterization phase when the chip
operates in scaled voltage conditions.

In the next section, we present in more details the methodologies and the evaluation
results of the major contributions of this dissertation.

3 Acceleration of reliability assessments against transient faults

The methodologies that were presented in this dissertation to accelerate the statistical
fault injection campaigns that are used to assess the reliability of the hardware struc-
tures at the microarchitectural level can be summarized in two categories. In the first
category, we accelerate the individual injection runs after the actual injection of the
fault in the structure based on the faults lifetime (Section 3.1), while in the second cat-
egory we further accelerate the fault injection campaigns of high statistical significance
using MeRLiN methodology by pruning the faults of the initial fault list (Section 3.2).

3.1 Acceleration of injection campaigns based on the faults lifetime

In [5], we extended the baseline mode of an out-of-order cycle accurate full-system
x86-64 fault injection framework (MaFIN) [2] with two extra modes of operation in
order to speed up the statistical fault injection campaigns at the microarchitecture level.
The common characteristic of the two proposed techniques of [5] is that they are im-
plemented after the actual injection of the fault in the hardware structures during its
lifetime. In the first mode, an injection experiment is forced to completion when the
fault is overwritten before it is read and thus we classify it early and accurately as
Masked. In the second mode, an injection experiment is forced to completion before
the end of the application in two cases: (a) when the fault is overwritten before it is

read, or (b) when an x86 instruction reads the fault from the faulty entry and reaches
the commit stage and before the actual termination of the benchmark. The second
method provides a tradeoff between speedup and accuracy in order to deliver a fast but
less accurate solution in the early reliability estimation problem.

For evaluation, we used MaFIN to carry out extensive fault injection campaigns of
transient faults in six structures of the microprocessor that hold the majority of chip’s
area: L1 Data cache, L1 Instruction cache, L2 unified cache, Physical Integer Register
File, LSQ (data field) and LSQ (address field). We used seven benchmarks from the
MiBench suite [10], while we injected 2000 faults per campaign that corresponds to
2.88% error margin and 99% confidence level according to [11].

From the results of this study, we concluded that for the intra core structures (phys-
ical integer register file, address and data fields of LSQ), the best solution to speed up
the statistical fault injection campaign is the second mode of operation with negligible
loss of estimation accuracy, leading to a high speedup of 3.38X, 4.06X and 3.37X for
the three structures respectively. Except for the second mode, the first mode could be
also used for the same structures without any accuracy loss leading to a final speedup
of 2.63X, 2.92X and 1.46X respectively.

On the other hand, the best choice for an architect to estimate the reliability of caches
is the first mode operation. This conclusion comes from the fact that the inaccuracy of
caches’ reliability assessment using the second mode is not negligible (from 8.47 per-
centile units for L2 cache to 20.13 units for L1 Data cache) and the speedup is not as
high as in the intra core structures (for instance only 1.06% increase of speedup for the
L2 cache). Consequently, the first mode is the best choice for caches to speedup cam-
paign (with 1.37X, 1.48X and 1.05X speedup for the L1 Data, L1 Instruction cache and
L2 cache respectively) and to ensure the final estimation accuracy.

3.2 Acceleration of injection campaigns based on fault pruning (MeRLiN)

Exhaustive fault injection at the microarchitecture level using the entire statistically
significant fault list (i.e. a list of all the flips for every bit of all hardware structures and
for every program execution cycle) is infeasible. Thus, designers in the industry resort
to statistical fault sampling to boost the throughput of massive fault injection cam-
paigns, while maintaining a reasonably high accuracy of the final estimations. Despite
the acceleration provided by the statistical fault sampling, the total simulation time that
is needed to estimate the vulnerability of multiple hardware structures with different
configuration parameters is still unaffordable and it leads to larger conservative design
decisions. Consequently, the acceleration of the microarchitectural fault injection of
array-based structures that occupy the majority of chip’s area during the first steps of
its design cycle is of major importance for the engineers that work in the industry.

MeRLiN methodology [6] accelerates the reliability estimation of hardware struc-
tures at the microarchitecture level from 1 up to 3 orders of magnitude without com-
promising the final accuracy of the assessment. MeRLiN consists of three main phases
(see Fig. 1): Preprocessing, Fault List Reduction and Fault Injection Campaign. Next,
we briefly describe these three phases:

Fig. 1. Flowchart of MeRLiN.

Preprocessing: This phase takes place off-line and is responsible for two main tasks:
the ACE-like analysis and the Initial Fault List Creation:

a) The ACE-like analysis is responsible to identify in a single pass all the vulnera-
ble intervals of all hardware entries of the targeted structure (physical registers,
store queue entries, cache words, etc.). For our analysis, a vulnerable interval of
an entry starts with a write operation and ends with a committed read of the
same entry or starts with a committed read and ends with another committed
read of the same entry; all other intervals are non-vulnerable. This is different
than classical ACE analysis [6] (see Fig. 2). All the faults that hit non-vulnerable
intervals are excluded from the procedure of the actual injection and are classi-
fied as Masked as it is definite that they will not affect program execution. Dur-
ing the ACE-like analysis task, all the information concerning the vulnerable
intervals is stored along with the information of the instruction pointer (RIP)
and the microprogram counter (uPC) of the microarchitectural instruction that
accesses the entry at the end of the vulnerable interval. This information is
needed in the second phase of our algorithm (Fault List Reduction).

b) The Initial Fault List Creation is the second task of the first phase of MeRLiN
in which the initial fault list of each injection campaign is created according to
the typical statistical fault sampling formula of [11]. The initial fault list guar-
antees high statistical significance for all our results. The initial faults popula-
tion is defined by: (1) the size (in bits) of the hardware structure, (2) the total
execution (in cycles) of the benchmark that is already known from the ACE-like

benchmark configuration param.
• number of entries
• execution time
• error margin
• confidence level

ACE-like analysis

initial fault list

1st step: Grouping according to
RIP and uPC

group Ngroup 1 group 2 group 3 . . .

2nd step: Grouping according to byte position

reliability estimation

Preprocessing

Fault
List Reduction

Fault
Injection
Campaign

vulnerable intervals

groupMgroup 1 group 2 group 3 . . .

fault injection & parsing

reduced fault list

task of the method, (3) the statistical confidence level and (4) the statistical error
margin. The execution time required for the exhaustive fault injection cam-
paigns using this initial population of faults at the microarchitecture level for all
the combinations of benchmarks, hardware components and configuration pa-
rameters of each component is months or even years of execution, which is in-
feasible to take place especially in the early design phases of a chip. With MeR-
LiN we reduce this time by 1 to 3 orders of magnitude.

Fig. 2. ACE and ACE-like intervals definition example.

Fault List Reduction: This phase of MeRLiN consists of a two-step grouping algo-
rithm:

a) In the 1st step of the group creation algorithm, the remaining faults that hit ACE-
like vulnerable intervals are stored in different subdirectories according to the
RIP and the uPC of the instruction that reads the entry at the end of the interval
(see Fig. 3). Each of the created groups consists of transient faults on the same
or different entries of the hardware structure being analyzed, during the same or
different ACE-like vulnerable intervals that are read by a micro-instruction with
the same RIP and the same uPC. The classification of the faults in groups ac-
cording to the uPC and the RIP of the microarchitectural instruction that ac-
cesses the faulty entry at the end of the vulnerable interval is necessary because
different micro-instructions of the same instruction (x86 in our case study but
generally applicable) can lead to different fault effects; thus, they should be
classified separately in different groups (our experimental results validate this
assumption).

b) In the 2nd step of the group creation algorithm, to maximize MeRLiN’s accuracy
especially for groups with hundreds of faults, we select more than one fault for
the actual fault injection runs in cases that faults hit a different byte of the entry.
Moreover, faults in different bytes are selected from different dynamic instances
of the same static instruction to increase time diversity (see Fig. 4). In this way,
MeRLiN finally creates groups of equivalent faults at the byte granularity en-
suring the accuracy of the final estimation. This can be further extended to sep-
arate faults hitting different nibbles or bits, but our experiments verify that this
is not necessary and the byte granularity is sufficient.

t1 t2 t3 t4 t5 t6 t7 t8 t9

squashedACE interval ACE interval

MeRLiN’s ACE-like
interval

time

MeRLiN’s ACE-like
interval

MeRLiN’s ACE-like
interval

Fault Injection Campaign: At the end, all the selected faults from all the created
groups are stored in the reduced fault list repository. Only these group representative
faults are actually injected using the microarchitecture level fault injector.

Fig. 3. 1st step example of the grouping algorithm.

Fig. 4. 2nd step example of the grouping algorithm.

To evaluate the accuracy of the Fault List Reduction phase of MeRLiN we defined
the homogeneity metric that expresses the effectiveness of our group creation algorithm
to classify faults in groups that finally manifest the same fault effect. On average, the
homogeneity of the created groups is very high (more than 91% for all our campaigns).
In our study, we used the state-of-the-art microarchitectural injection tool (GeFIN) that
is based on Gem5 simulator and extended it to implement and evaluate MeRLiN meth-
odology on three data-related structures and one instruction-related structure of an x86-
64 out-of-order processor model:

t1 t2en
try

A
en

try
B

t3en
try

C

t4

t9 t10 t13

t6 t8 t12

t5 t7 t11

group 1

group 1

group 1

group 2

group 2

group 3

group 4

rip A
uPC 0

rip D
uPC 3

rip C
uPC 3

rip C
uPC 3

rip A
uPC 0

rip B
uPC 1

rip C
uPC 3

time

bytes

b7

4

3

2
3

1 1

5
4

3

1 1

6

5

4

2

b6

b5

b4

b3

b2

b1

b0

66

timeentry K, rip F, uPC 4 entry L, rip F, uPC 4 entry M, rip F, uPC 4

§ The physical integer Register File for three sizes: 256, 128, 64 registers.
§ The data field of the Store Queue of the Load/Store Queue for three sizes: 64

load and 64 store, 32 load and 32 store, and 16 load and 16 store entries. Gem5
does not implement data fields in the Load Queue.

§ The data array of L1 Data cache for three sizes: 64KB, 32KB and 16KB.
§ The destination register of the Issue Queue for two sizes: 32 and 60 queue en-

tries.
For all our fault injection campaigns, we used 60,000 faults that correspond to 99.8%

confidence level and 0.63% error margin. The key contributions of MeRLiN method-
ology are summarized below:

§ It accelerates statistical microarchitecture level fault injection from 1 to 3 orders
of magnitude. Our experiments with full runs of 10 MiBench benchmarks [10]
show 93X, 225X, 68X and 28X speedup on average for different sizes of the
register file, the store queue, the first level data cache and the issue queue, re-
spectively. When applied to 10 SPEC CPU2006 benchmarks [12], MeRLiN re-
veals larger average speedups of 1644X, 2018X and 171X for the register file,
the store queue and the first level data cache, respectively.

§ It reports virtually the same reliability estimations as exhaustive (and infeasible)
microarchitectural fault injection with extremely high statistical significance.

§ It delivers fine-grained insights of the fault effects (Silent Data Corruptions –
SDC, Detected Unrecoverable Errors – DUE, crashes, locks) unlike lifetime-
analysis methods. This can be used to evaluate different protection schemes or
to identify benchmarks more prone to SDCs or DUEs.

4 Acceleration of permanent faults online detection in many-
core architectures

Functional testing techniques have gained increasing acceptance for microprocessor
error detection during the last years. Functional online error detection approaches for
many-core architectures are based on the application of the test programs during normal
system operation and should adhere to the following requirements: (a) reduced test pro-
gram execution time, (b) small memory footprint, (c) test program replication as all
processor cores have to execute the same test program to detect faults and guarantee
high fault coverage levels (this is different from traditional parallel programs).  

In [7], we propose a functional online approach to accelerate the error detection of
the Intel’s Single-chip Cloud Computer (SCC) that contains 48 in-order Pentium cores.
The SCC architecture consists of 24 tiles (two cores per tile) and 4 integrated DDR3
memory controllers supporting up to 64GB DRAM. Each processor SCC core has a
16KB L1 instruction cache, a 16KB L1 data cache and a 256KB L2 cache. Moreover,
each tile has a 16KB message passing buffer (MPB) that bypasses L2 cache during
communication.

For the experiments, we developed two test programs with different characteristics
which represent typical test program formats used in functional online testing:

§ Load-Apply-Accumulate (LAA) test program. It applies ATPG-generated test
patterns stored in the off-chip DRAM. An LAA test program first reads two test
vectors from the DRAM (assuming two-operand operations are being tested); it
applies the target instruction (i.e. an arithmetic or logic instruction) and finally
accumulates the results. We experiment with a loop-based LAA test program
which applies a certain amount of test patterns (192KB or 384KB). LAA test
program is memory-intensive and stresses the memory system of the SCC.

§ Linear-Feedback-Shift-Register (LFSR) test program. This CPU-intensive test
program applies pseudorandom patterns generated by a 32-bit LFSR. Similarly
to LAA program, it first generates two pseudorandom test patterns, applies the
target instruction and accumulates the results. LFSR test program generates ei-
ther the same number of test data with LAA or 10 times more (e.g. for 384KB
LAA, LFSR generates 3840KB test data).

The proposed method shown in [7] focuses on the efficient parallel execution of the
test preparation phase. The test patterns are divided into 48 segments each one assigned
to the private memory region of a core. The LAA test program is divided into two
phases. First, all cores load in parallel the test patterns from their private memories,
apply the tests and accumulate the responses. Subsequently, each core copies the cor-
responding test patterns from the local MPBs of the other 47 cores and applies/accu-
mulates the tests. It is essential that in each cycle of the second phase each MPB serves
the memory requests of only one core in order to limit the traffic congestion in the mesh
and the routers. The rationale of the proposed method is that having every core to read
test patterns from its private memory and distribute them to the other cores is the most
efficient way to parallelize the test preparation phase of the LAA program. Our exper-
imental results revealed up to 5.9X and 36.0X speedup when we applied our proposed
method to 12 and 48 cores, respectively.

Regarding the LFSR test program, our experiments revealed that its test preparation
phase cannot be parallelized in a more efficient way since the time each core requires
to run the LFSR code to generate a certain number of test patterns is shorter than the
time to copy these test patterns from the local MPB of an adjacent core. Thus, a second
improvement in the parallelization of the entire online test program could be the parallel
execution of memory-intensive test programs (e.g. LAA test) and CPU-intensive test
programs (i.e. LFSR test) in the two cores of the same tile. This improvement increased
the final speedup to 10.8X and 47.6X for the 12 and the 48 cores, respectively.

5 Statistical analysis to predict the safe voltage margins in
multicore CPUs

Both static and dynamic variations lead microprocessor architects and designers to ap-
ply conservative guardbands (operating voltage and frequency settings) to avoid timing
failures and guarantee correct operation, even in the worst-case conditions excited by
unknown workloads. Predicting safe voltage operation regions of the microprocessor
during manufacturing or after microprocessors’ release to the market using as input the

performance counters provided by the system has recently gained the interest of the
computer architecture community.

In [8] and [9], we implemented linear regression models with three different feature
selection algorithms aiming to predict both the Vmin and the Severity (a metric that in-
dicates a region of chip’s operation below the safe Vmin and before the occurrence of
any catastrophic for the system error) in the eight ARMv8-based cores of the X-Gene
2 chip. The inputs for our models came from the characterization phase of the chip in
scaled voltage conditions and from the performance counters that were collected for
each workload during its entire execution in nominal voltage conditions.

In our experiments, we ran all the benchmarks from the SPEC CPU2006 suite with
all their inputs (40 programs in total). The evaluation of our models’ accuracy targeting
either the Vmin or the Severity, was done by: (a) using the coefficient of determination
(R2) that assesses how well a model explains and predicts the future outcomes; also, it
is indicative of the level of explained variability in the dataset. The larger the values of
R2, the better fit the model provides, while the best fit exists when R2 is equal to 1, (b)
using the Root Mean Square Error (RMSE) that represents the deviation between the
predicted and the observed values (the smaller the RMSE the more accurate the model
is), (c) comparing our models with the baseline (naïve) model, which is the average of
the target values (Vmin or Severity) of the training dataset.

Fig. 5. Accuracy of predicting the Vmin of the most sensitive core.

In general, our proposed method can lead to power gains from 11.87% up to 20.28%
depending on the aggressiveness (Severity prediction is more aggressive than predict-
ing Vmin) of the prediction scheme. In this section and due to space limitations, we pre-
sent in Fig. 5 the results for only one representative case of our analysis on predicting
the Vmin of the most sensitive core of the chip (core with the lowest Vmin on average for
all the experiments). The best accuracy (only 5mV inaccuracy) for this case was ob-
served after using the polynomial transformation with f_regression selection and only
4 selected polynomial features leading to 11.87% power savings compared to the case
of using the very pessimistic nominal voltage limit. Moreover, the R2 that was measured
for this prediction model is high (close to 0.75) indicating a good fit of the model.

5
.8

3
8

5
.4

0
3

5
.2

7
0

3 6
.3

3
0

5

6
.7

6
3

3

6
.1

1
4

4 7
.1

7
2

8

7
.6

6
9

1

7
.4

7
2

5

8
.0

2
0

3

6
.5

6
0

1

6
.9

9
4

5

6
.9

1
7

7
.1

6
3

7

7
.3

8
6

3

7
.8

6
2

9

7
.0

2

7
.2

6
6

9

8
.0

9
1

8

8
.1

7
9

4

5
.4

3
2

9

5
.2

7
7

7

5
.6

5
1

7

5
.0

2
4

2

5
.8

1
0

1

6
.2

7
2

4

1
0

.0
0

0
6

1
3

.3
3

3
1

1
4

.0
2

4
5

1
1

.6
0

8
4

5
.0

1
1

5

5
.0

4
5

0

5
.3

5
0

8

5
.0

1
0

8

8
.4

7
6

2

8
.8

3
2

0

1
1

.0
5

1
6 1

2
.7

9
1

8

1
8

.7
7

6
0

1
9

.7
1

6
9

4

6

8

10

12

14

16

18

20

1 feature 2 features 3 features 4 features 5 features 6 features 7 features 8 features 9 features 10 features

R
M

S
E

 (
m

V
)

f_regression RFE polynomial with RFE polynomial with f_regression baseline

avg. baseline value 5.3871

6 Conclusions

In this dissertation, we propose several techniques to accelerate the analysis of the reli-
ability and the energy efficiency levels of modern microprocessors that can be em-
ployed throughout the different phases of their life-cycle. For the pre-silicon reliability
analysis phase, we proposed different methods to accelerate the statistical fault injec-
tion campaigns at the microarchitectural level either based on the faults lifetime after
their injection that leads to an acceleration of up to 4.06X or by using fault pruning of
the initial fault list provided by MeRLiN methodology that accelerates the reliability
assessments even further (from 1 up to 3 orders of magnitude). Moreover, for the post-
silicon reliability analysis phase, we proposed two methodologies. In the first, we pro-
posed a parallelization approach to accelerate the online detection of permanent faults
in many-core architectures (with up to 47.6X speedup), while in the second we pro-
posed a statistical analysis approach to accurately predict (with only 5mV inaccuracy)
the safe voltage operation margins of the ARMv8 cores of the X-Gene 2 chip.

References

1. G.Moore, “Cramming more components into integrated circuits”, In Electronics, April 1965.
2. N.Foutris, M.Kaliorakis, S.Tselonis, D.Gizopoulos, “Versatile architecture-level fault injec-

tion framework for reliability evaluation: a first report”, IEEE International On-Line Testing
Symposium, 2014.

3. S.Tselonis, M.Kaliorakis, N.Foutris, G.Papadimitriou, D.Gizopoulos, “Microprocessor reli-
ability- performance tradeoffs assessment at the microarchitecture level”, IEEE VLSI Test
Symposium, 2016.

4. M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, N.Foutris, D.Gizopoulos, “Differential fault
injection on microarchitectural simulators”, IEEE International Symposium on Workload
Characterization, 2015.

5. M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, D.Gizopoulos, “Accelerated microarchitec-
tural fault injection-based reliability assessment”, IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, 2015.

6. M.Kaliorakis, D.Gizopoulos, R.Canal, A.Gonzalez, “MeRLiN: Exploiting dynamic instruc-
tion behavior for fast and accurate microarchitecture level reliability assessment”,
ACM/IEEE International Symposium on Computer Architecture, 2017.

7. M.Kaliorakis, M.Psarakis, N.Foutris, D.Gizopoulos, “Accelerated online error detection in
many-core microprocessor architectures”, IEEE VLSI Test Symposium, 2014.

8. G.Papadimitriou, M.Kaliorakis, A.Chatzidimitriou, D.Gizopoulos, P.Lawthers, S.Das,
“Harnessing voltage margins for energy efficiency in multicore CPUs”, IEEE/ACM Inter-
national Symposium on Microarchitecture, 2017.

9. M.Kaliorakis, A.Chatzidimitriou, G.Papadimitriou, D.Gizopoulos, “Statistical analysis of
multicore CPUs operation in scaled voltage conditions”, IEEE Computer Architecture Let-
ters, Jan. 2018.

10. M.R.Guthaus et al., “MiBench: A free, commercially representative embedded benchmark
suite”, International Workshop on Workload Characterization, 2001. 

11. R.Leveugle, A.Calvez, P.Maistri, P.Vanhauwaert, “Statistical fault injection: Quantified er-
ror and confidence”, ACM/IEEE Design, Automation & Test in Europe Conference, 2009.

12. Standard Performance Evaluation Corporation, https://www.spec.org [accessed 13/11/2017]

